ESTUDO

PROPRIETÁRIO: Prefeitura Municipal de Jaú

ATIVIDADE PRINCIPAL : Poder Público Municipal

CNPJ 46.195.079/0001-54

BACIAS : Tietê Jacaré UGRHI : 13 MC : 51

USO DO RECURSO HÍDRICO: Travessia TR - Ponte

MANANCIAL: Rio Jaú, afluente a MD do Rio Tietê.

MUNICÍPIO : Jaú

DATA: 17 de outubro de 2.022

Engº Carlos João Perlatti

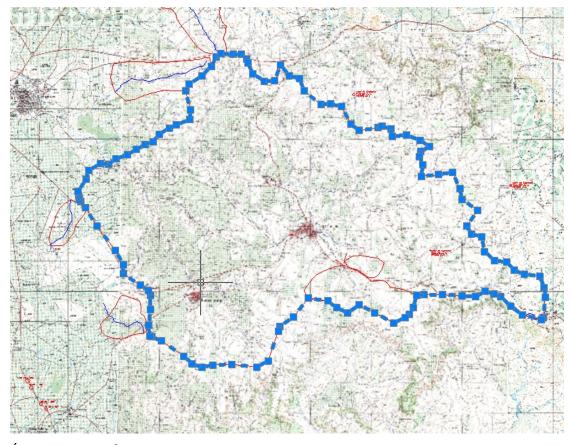
CREA nº 0600797894

OBJETIVO

Este estudo tem como objetivo fornecer a Vazão Máxima de Cheia para verificação da construção de uma ponte em área rural sob estrada municipal de terra, com dimensões já pré definidas com largura de 25,00m e altura de 5,00m.

Este estudo se refere à análise de uma travessia (Ponte), s coordenadas, 22°19' 53,5639" S e 48°30' 31,9657" W no Rio Jaú.

Neste local do Rio, existe uma ponte com dimensões menores do que a ora adotada e que após alguns transbordamentos do rio, teve uma movimentação de seu pilar, necessitando, portanto, de adequações para não ocorrer novos transbordamentos em vazões de cheia


A finalidade desta travessia é dar passagem às águas do referido Rio e possibilitar o tráfego normal pela Estrada Municipal ali existente, garantindo que não haja transbordamento do leito do Rio.

A ponte será construída em vigas de ferro como longarinas e será apoiada em três pilares, sendo um na metade do vão da ponte.

TRAVESSIA RIO JAÚ

Manancial: Rio Jaú, afluente a MD do Rio Tietê

Coordenadas: 22°19' 53,5639" S e 48°30' 31,9657" W

Área de 339 Km²

Apresentaremos o estudo hidrológico e hidráulico desta travessia, com suas vazões máximas, calculadas para um período de retorno T= 100 anos.

ESCOLHA DO MÉTODO DE CÁLCULO DA VAZÃO MÁXIMA

Como estamos trabalhando em uma bacia muito grande, e possuímos uma série de dados fluviométricos históricos, obtidos do posto fluviométrico 5D-019 localizado a jusante da seção de estudo e seus dados são de 20 anos consecutivos, dessa maneira adotaremos o método de Log – Pearson III.

Este método é aplicado com a análise da estatística aplicada sobre os dados verificados ao longo dos anos, ou seja, o propósito da análise estatística é utilizar os eventos hidrológicos de vazões observadas num dado período, como meio para efetuar a sua projeção para um período de tempo maior.

Desde que haja disponibilidade de dados por um período igual ou superior a 20 anos, existem várias distribuições de probabilidade que podem ser utilizadas para a estimativa de vazões com períodos de retorno superiores.

O método de Pearson tipo III, consiste no uso dos dados observados para se calcular a média, o desvio padrão e o coeficiente de assimetria da distribuição. No entanto, na prática consiste primeiro em transformar os dados observados em forma de logaritmos, e então calcular os parâmetros estatísticos.

Os símbolos usados neste método, são:

Y = valor numérico do evento hidrológico (vazão de cheia anual) - m³/s.

X = logaritmo de Y.

N = número de eventos hidrológicos considerados.

Mx = média de Xi.

 $\Delta Xi = Xi - Mx$.

Sx = desvio padrão de Xi.

g = coeficiente de assimetria.

Kp = coordenada Pearson tipo III expressa em número de desvios padrões em relação à média, para vários períodos de retorno.

Q = vazão de cheia calculada para um determinado período de retorno - m³/

PEARSON TIPO III

DADOS DO POSTO FLUVIOMÉTRICO

PREFIXO: 5D-029 NOME DO POSTO: JAU MUNICÍPIO: JAU

CURSO D'ÁGUA: JAU,R/BUGIO,RIB DO

LATITUDE: 22°18'02" LONGITUDE: 48°32'30"

Obs: valores com --- representam dados inexistentes.

Vazões Máximas Mensais (m³/s)

Ano	Janeiro	Fevereiro	Março	Abril	Maio	Junho	Julho	Agosto	Setembro	Outubro	Novembro	Dezembro
1981						6,27	3,36	3,19	3,19	10,28	15,5	16,84
1982	31,78	30,08	15,21	28,95	9,57	17,2	8,25	5,74	5,94	33,8	18,21	26,17
1983			42,31	21,47	47,75	55,37	14,29	10,27	26,93	16,86	25,16	27,23
1984	22,86	11,56	14,77	9,35	13,13	4,91	4,59	9,65	8,07	3,84	8,07	30,61
1985	11,12	22,58	31,88	19,58	9,67	6,17	3,97	3,69	4,68	2,92	6,42	5,29
1986	8,07	7,53	6,42	4,98	12,54	3,04	2,79	7,98	4,54	6,75	3,43	
1987	12,54	18,08	37,62	8,7	17,57	10,67	7,01	4,67	7,01	5,73	31,02	34,73
1988	43,3	33,47	28,05	20,09	9,86	6,99	5,09	4,14	3,54	21,87	14,58	32,61
1989	20,85	36,17	20,85	12,15	11,72	6,28	15,27	6,19	10,68	7,08	6,81	24,9
1990	40,46	11,09	35,87	10,26	10,47	5,25	8,48	9,76	5,09	9,96	14,47	35,87
1991	19,09	48,49	34,22	45,21	28,05	10,69	11,06	5,69	4,93	7,91	5,07	30,23
1992	10,6	12,74	11,09	20,55	16,93	5,46	7,03	4,68	7,03	18,63	8,84	5,89
1993	13,95	16,65	9,75	7,63	5,79	11,18	4,3	5,99	14,86	6,07	12,1	10,1
1994	19,94	31,78	15,96	6,18	5,89	4,57	4,13	3,2	2,59	6,38	7,1	29,24
1995	46,5	57,45	24,49	23,3	12,6	5,93	6,4	3,96	4,22	6,89	5,74	8,28
1996	68,89	8,8	14,79	6,02	5,65	3,3	2,82	2,98	9,53	10,38	38,23	24,09
1997	33,67	26,11	11,37	6,89	10,93	39,57	6,6	3,79	6,6	7,38	24,09	12,03

1998		30,11	29,41	8,9	11,92	7,68	5,1	5,56	7,38	39,72	3,3	28,44
1999	53,17	29,69	63,93	19,93	25,97	10,06	5,01	4,13	5,93	5,47	2,66	13,74
2000								7 42	19 98	4 76	36.86	

Método Log Pearson III

$$\boxed{LogQ = M_x + k_p S_x}$$

Número de Eventos = 20

Período de Retorno = 100

anos

		$X_1 = log$				1
N	Q	Q	X ²	X³	$(X_1 - M_x)^2$	Média dos Logaritmos
1	68,89	1,838	3,379	6,211	0,110	$M_x = 1,51$
2	57,45	1,759	3,095	5,445	0,064	
3	53,17	1,726	2,978	5,139	0,048	Desvio Padrão dos Logaritmos
4	48,49	1,686	2,841	4,790	0,032	$S_x = 0,18$
5	40,46	1,607	2,583	4,150	0,010	
6	37,62	1,575	2,482	3,910	0,005	$Mx^2 = 2,30$
7	36,86	1,567	2,454	3,844	0,004	
8	36,17	1,558	2,428	3,784	0,003	$Mx^3 = 3,56$
9	33,67	1,527	2,332	3,562	0,000	
10	32,61	1,513	2,290	3,466	0,000	Coeficiente de Assimetria
11	31,88	1,504	2,261	3,399	0,000	g = 0,33
12	31,78	1,502	2,256	3,390	0,000	
13	31,78	1,502	2,256	3,390	0,000	Determina-se k _p com auxílio da tabela em anexo
14	30,61	1,486	2,208	3,280	0,000	$K_p = \frac{2,755}{}$
15	30,11	1,479	2,187	3,233	0,001	
16	27,23	1,435	2,059	2,955	0,005	Calcula-se, o log. da vazão ao período de retorno
17	20,55	1,313	1,723	2,263	0,037]
18	16,84	1,226	1,504	1,844	0,078	Log Q = 2,014
19	16,65	1,221	1,492	1,822	0,081	
20	12,54	1,098	1,206	1,325	0,166	Vazão com o período de retorno desejado
						Q = 103,30 m³/s

Vazão

Ano máx. Ordenada da maior para menor

81	16,84	68,89
82	31,78	57,45
83	27,23	53,17
84	30,61	48,49
85	31,88	40,46
86	12,54	37,62
87	37,62	36,86
88	32,61	36,17
89	36,17	33,67
90	40,46	32,61
91	48,49	31,88
92	20,55	31,78
93	16,65	31,78
94	31,78	30,61
95	57,45	30,11
96	68,89	27,23
97	33,67	20,55
98	30,11	16,84
99	53,17	16,65
2000	36,86	12,54

CALCULO DA VAZÃO MÁXIMA

Ordenamento dos dados obtidos das máximas vazões (Y) e cálculo dos X (log)

Média dos logaritmos:

 $M_X = 1,51$

Desvio padrão dos logaritmos:

 $S_X = 0.18$

 $Mx^2 = 2,3$

 $Mx^3 = 3,42$

Coeficiente de assimetria:

g = 0.33

Com o coeficiente de assimetria (\mathbf{g}) e o período de retorno ($\mathbf{100}$ anos), obtemos da tabela de Pearson o valor de (K_p):

$$K_p = 2,755$$

Com os dados obtidos, calcula –se o logaritmo da vazão correspondente ao período de retorno, através da expressão:

$$log Q = M_X + K_p.S_X$$

$$\log Q = 2,014$$

Ao se calcular o antilog do log Q, determinamos a vazão de cheia (Q) para os estudos das seções das travessias.

$$Q_{100} = 103,30 \text{ m}^3/\text{s}$$

VERIFICAÇÃO DA SEÇÃO PARA A VAZÃO MÁXIMA

Com a largura da ponte de 25 m e a altura máxima da ponte é de 5,00m. Descontando se a altura projetada das longarinas de 1,40m, teremos uma altura livre de 3,60m. Aplicando-se a recomendação de deixarmos 20% de free board até a parte inferior das longarinas longitudinais da ponte, teremos uma altura máxima disponível de 2,90m para verificação da vazão máxima.

Para que seja garantida a velocidade compatível para o resvestimento da seção que é em terra (coeficiente n = 0,035) e utilizando a formula de Manning, iremos determinar a vazão que essa seção veiculara.

Com a fixação desses parâmetros, teremos conforme planta anexa uma altura do nível d'água sob a ponte de h = 3,60 m.

V =	1/n . Rh ^{2/3} .	/n . Rh ^{2/3} . Io ^{1/2}						
	n Coeficiente de rugosidade = 0,035							
	Rh	Raio hidráulico = 2,50						
	lo	Declividade = 0,001 m/m						

V =	1,66 m/s
I	

Verificação da vazão

Q =	V . S	
	S	área da seção = 72,20
	V	Velocidade = 1,66
Q p =		119,85 m/s

CONCLUSÃO

Conforme foi detalhado acima, a vazão veiculada pela ponte para uma altura de lâmina d'água de 2,90m é de Q_t = 119,85 m³/s, suficientes para garantir a vazão calculada de Q_{100} = 103,30, m³/s.

Prefeitura Municipal de Jau Jorge Ivan Cassaro Prefeito Municipal CPF 827.855.118-91 RG 8.630.811-7